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Sciences, Chernogolovka, 142432, Moscow Region, Russia 
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Abstract. The purpose of the paper is to illustate how the cluster method, introduced 
originally in classical statistical mechanics and later on generalized to describe correlation 
effects in quantum systems, can be extended for treating collective behaviour in diffusion 
limited recombination A + B-0. 'This involves exploring a many-body state vector in 
second quantization form with pairing correlations between particles only. An algebraic 
approach for deriving kinetics equations for pair correlation functions g&,f) is pro- 
posed, where A , 2  =a,  b. Solution of those equations is presented. In two-body appmxi- 
mation, &(r, I) and the corresponding timedependent rate constant reproduce the 
Smoluchowski results. Many-body effects are analysed both for a monomolecular regime 
(cbbc.(f)) (MR) and a bimolecular regime (c&) =c&)) (BR). For MR at cb+0, &(r ,  I) is 
shown to have exponential screening on the characteristic length inversely pmpotional to 
6, and the rate constant acquires additional correction, proportional to fib, to the 
Smoluchowski value. For BR at the later stage of recombination, the pak correlation 
function is predominantly determined by the initial condition, i.e. g*(r.O), and the 
average concentration c. is found to exhibit time dependence = (-'I4 at the pie-asymptotic 
stage. However, at the true asymptotic, I--, the modelgivesc.==r'. We confront these 
results with the previous analytical results and find a qualitative consistency in the MR case 
and some discrepancy for the BR case. The proposed description is rather simple and can 
be applied for exploring collective and correlation effects in other non-equilibrium 
classical systems. 

1. Introduction 

It has become increasingly clear that theoretical description of diffusion-limited 
recombination A + B+O (DLR) poses a problem of fundamental interest in its own 
right [1-17]. DLR is an example of a many-body system showing spontaneous 
stratificaton of reagents followed by slowing of kinetics. Most studies of this pheno- 
mena have been discussed in the context of the statistical justification of the 
temporary decay of the concentration ~ = t - ~ ' '  (d is the dimension of space), that has 
been theoretically predicted in [2] and later on observed in computer simulations 131, 
and also the extension of the theory [2] for parallel reactions [4,5]. Theoretical 
approaches to DLR make use of all available techniques of many-body physics. A fairly 
good agreement with [2,3] has been achieved by several methods: Kirkwood approxi- 
mation [9-111, decoupling techniques [I21 and field theoretical approaches [13,14]. 

It is now common to distinguish two stages in DLR: the initial stage and the 
asymptotic stage. 
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(a) At the initial stage of recombination, the typical configurations of reagents can 
be viewed as a mixture of a vast number of small homogeneous domains dispersed 
randomly among relatively large conglomerates. Collective processes, here, modify 
the two-body effective rate of recombination, making it concentration dependent. 

(b) At the asymptotic stage of DLR, the small size domains recombine, so that 
recombination localizes at the interface of the surviving homogeneous conglomerates. 
Accompanied kinetics proceeds slower than c(t)-t-’. That is the fluctuation regime 
of DLR, described by the law c=t-”4. 

Statistical justification of the fluctuation regime is rather a challenging task, and is 
not the subject of this paper. Instead, keeping in mind problem (b), we direct our 
attention to the initial stage of DLR. More precisely, the aim is to describe the 
influence of pairing correlations on the kinetics of DLR. The possibility for this study 
stems from cluster ideas [18] about the role of pairing correlations in electron gas. The 
present work has been inspired by the second quantization version of the cluster 
expansion method, usually referred to as the coupled cluster approach (CCA); for a 
comprehensive review and guide to the literature see [19-211. The advantage of the 
CCA is three-fold. First, the CCA automatically takes into account the indistinguishabi- 
lity of classical particles when the Bose statistics for creation and annihilation 
operators of particles is chosen, thereby providing an algebraic technique for descrip- 
tion of the systems. Second, it permits, selectively, sum ladder, ring, and other 
diagrams without requiring perturbation analysis. This is an appealing point, since the 
ring diagrams, or in other words, terms responsible for random phase approximation 
(WA) help substantially in understanding microscopically the occurrence of collective 
modes in many-body systems [22]. And last, but by no means least, it treats on an 
equal footing both closed and open systems in which the particle numbers irreversibly 
change during the course of the reaction, and all the processes are governed by a non- 
Hermitian Liouvillean. We eschew a variational description of DLR owing to the lack 
of Hermicity of the Liouvillean. It is the projective (non-variational) character of the 
CCA that allows us to adopt CCA for inquiring into DLR. 

At first sight, the collective description is applicable to long-range interactions 
between particles. Indeed, for the collective behaviour to be valid a test particle must 
be affected simultaneously by many other particles of the system. In DLR, the role of 
long-range interactions is played by the two-body correlation function of the 
Smoluchowski approximation, that behaves as g,,&,t)=r-’ at r - m  and f - m ,  
while elemenary rates of pair recombination is of short range in space. The long-range 
character of gA(r, t) suggests the occurence of long-range drift J =  - DVgnb towards 
the region exhausted of diffused particles. One should therefore account for the 
kinetics of the many-body distribution function by considering the two-body function. 

In the present paper, we report an extension of the CCA to non-equilibrium 
classical systems incorporating irreversible rapid recombination. To do this, we first 
write out the full distribution function F(x, t )  (DF) in terms of the Prigogine-Balescu 
expansion and transform it to second quantization form, IF). In section 3, a general 
scheme of time-dependent CCA for reacting systems is constructed; in particular, we 
emphasize the role of pairings between particles. A relation between the CCA state 
vector and the Prigogine-Balescu state vector is given in section 4. The main idea of 
the CCA is in guessing the exponential form of vector state IF) in a prescribed manifold 
of states. So, the results obtained are clearly dependent on a priori suggestions 
concerning IF). A justification for pairing correlation approximation, which we adopt 
for DLR in section 5, is based on the utility of this approximation in treating correlation 
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properties in homogeneous electron systems as well as for atoms and molecules. 
Kinetics equations for average concentrations of particles and for pair correlation 
functions gu(r,t), where A,A'=a,b, will be obtained, relying on the algebraic 
approach of sections 6 and 7. Solution to these equations is examined in section 8 in 
two-body approximation. This is followed by analysis of the full equations involving a 
collective description in section 9. Section 10 summarizes the major conclusions of the 
calculations and outlines the extension of the theory. Finally, in the appendices we list 
useful formulae used in this paper. 

2. Representation of state vector in Fock space 

Particle concentration, from a statistical point of view, is determined via reduced DF. 
A regular method to gain knowledge about the reduced DF is provided by 
Prigogine-Balescu expansion of the full DF. We begin by reviewing briefly some basic 
facts on this subject. Our purpose is to constuct the sewnd quantization represen- 
tation for the expansion of IF). 

Write out the full DF for n particles on a lattice with 51 cells as a multiple Fourier 
expansion [W, 241 

On labelling each particle, F(")(x, t) specifies the probability of finding n particles in 
the configuration x=(x, ,  . . . ,xn) ,  with j ' s  argument meaning the wordinate of the 
cell containing particle numberj. The symmetry of F(")(x, t) relative to the interchange 
of labels is provided by summing all possible permutations, p, of labels. The function 
@(")(k, t) is symmetric in the Fourier k-space. The wavevectors ki take over the first 
Brillouin zone of a simple cubic lattice. Throughout the paper, we assume DLR on a 
three-dimensional lattice, and use letters k, q to specify functions in the Fourier space 
and letters r, x to denote coordinate representation. 

In order to determine the expected values from (l), one needs to expand this series 
in terms of particle numbers with zero wavevector [23,24] 

Here and in the following, the prime over the sum signifies that the state with k = 0 is 
excluded. The reduced distribution function t )  =@')(O, t) denotes the prob- 
ability of finding n particles in the system. When a reaction occurs, then is a stochastic 
variable, so the normalization condition 

should be fulfilled. If we are thinking of @o as an intensive variable, the function F") 
should be of order 8-"0(1). In general, extraction of volume-dependence in reduced 
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DF, as will be shown in section 7, is a decisive condition for choosing the 'right' 
variables for description of the many-body system. The next reduced DF is one-body 
DF, @,(k)  = @")(k, 0 .  . . 0), which can be easily found by the Fourier transformation 
(2), and has order Q-'O(l). For statistically homogeneous systems, which we are 
interested in, the @,(k) = O  identically. The two-body DF, q4& - k )  = 
c€A"l(k, - k ,  0, . . . , 0) can be found by multiple summation of (1) over all configu- 
rations x' = (x3,  . . . , x.) for (e - 2) particles 

h(r, f) = Q-'(@dO +E' M k ,  - k ,  4 exp (W) (4) 
h 

where fi(nl-x2, t)=X&")(x, f), with r=x1-x2. Since function is of the order 
SPO(l) ,  so from (4), it follows that @z(k, - k , t )  is of the order W'O(1). The 
contracted description of the whole system is seen to be built into Fourier transformed 
DF, @(k, f), containing nearly all particles with mode k =  0. 

Having fixed notations, the discussion now proceeds to the second quantizide 
representation [22] rather than the coordinate one. Just as for the wavefunction for 
Bose particles in quantum mechanics, the DF Ffn)(x, f) is symmetric relative to the 
interchange of particle labels [SI. So, in accordance with the quantum mechanical 
'recipe', by choosing a set of 'occupied' states ki, we can assign each particle to a state 
k and, thus, associate a combination 

with shorthand notation 

1 - 1  

Here 10) is vacuum of particles, operator a: adds a new state k ,  while operator ak 
removes it from the many-body state. By allowing these operators to obey the Bose 
commutation relations 

a,] = 0 [a:, U,'] = 0 [ah, a,'] = 6(k - 4) ( 5 )  
where 6 is the Kronecker delta, we provide the symmetry of the full DF in coordinate 
representation (1). The state (1) will now be characterised by vector 

n 

I F f " ) ( t ) ) = Z  @ y k , t ) n u x : I o ) .  (6) 
fk) i - 1  

It is convenient to term the one-particle state k=O, which represents uniform 
distribution of one-particle probability, a ground state. The state when all particles 
have k=O will be referred to as a condensate [26]. Creation operator ul excites the 
condensate and gives rise to spatial inhomogeneity with wavevector k .  The definitions 
for condensate and excitations can be applied in the Fock basis by expansion IF(")@)) 
in powers of creation operator numbers with zero mode, employing the symmetry 
property of of"), i.e. 
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Single-particle excitation operators QZk = a:ao and complex conjugated operators 
Qd=aka; are fundamental units in the Fock space. The formula (7) can be rewritten 
in a more explicit, but somewhat unwieldy, form by making use of identity 
ao(a,t)”lO)=n(ao+)”-’lO). The component of IF(”’(t)) referred to as condensate, i.e. 
$o(ao+)”lO), defines the probability of having n particles on the lattice. The spatially 
non-uniform arrangement of particles is accounted for by the superposition of states 
with one-particle excitation only; analogously, pair distribution is included by super- 
position of states with two-particle excitations of condensate, and so on. 

We close this section with the extension (7) applied to states of statistically 
homogeneous systems composed of A and B particles, namely 

+c’$,a(-k,k,t)Q,+_kQb:,+. k . .)(ao+)2.(b:)””lO) (8) 

where Q& = b; bo. The operators for A and B particles commute with each other. In 
(S), just as in (7), the function $o has order 0(1), components $ut have order 
Q-’O(l). In general, an order to 0 for the reduced DF coincides, up to the choice of 
the sign, with a number of summations over wavevectors in the corresponding term of 
the full IF). This is the so-called regularity principle for the DF [24]. 

3. Vector state of the CCA 

The form of the state vector (8) is correct, but is awkward. It should be discarded in 
favour of a different (CCA) representation for IF) which is more convenient in 
practical calculations. 

The state IF) obeys the kinetics equation [25] 

(3, - L )  I F ( 0 )  = 0 01 IF(r))=e”IF(W (9) 
where Liouvillean, L ,  governing the recombination and diffusion, reads L = LD + LR, 
with 

Here 
3 

Dra = 20, ( 1  -cos k;) 
i=1 

is the dispersion law for particles of A( = a ,  b)  kind, D,, is the diffusion rate, and wk 
specifies the Fourier component of the rate of two-body recombination. Relying on 
(9) and (10). it is possible to find the reduced DF approximately by involving the 
projection opeator technique with subsequent implementation in perturbation theory. 
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To gain a correct result in the direct way one needs to sum an infinite set of terms in 
perturbation theory in powers of Lg. One method to meet the challenge of the 
summation problem is in exploring the m particle T-matrix. Practically, it is difficult to 
depart from the two-particle T-matrix. 

Another way exists, that also differs from inductive construction of the lrinetics 
equations; the coupled cluster approach, previously applied for calculating the 
correlation energy of the ground state of electron gas [19-21, 27,281 and in time- 
dependent quantum systems as well [33]. This method will be adopted to the kinetical 
sense of our problem and will permit us to calculate, in a systematic manner, 
correlation properties of many-body reacting systems, at least in the lowest approxi- 
mation. 

A key idea of the CCA is to choose the state vector in a prescribed subspace of 
states. w e  are free to take IF@)) in the form 

IF(O)=exp (S(0)lW)). (11) 

The choice of the operator S(t), responsible for correlation effects, and reference state 
IY(t)) are cornerstones in the derivation of kinetics equations. Classification of states 
in IF(r)) as those formed from condensate by excitation of particles suggests that 
IY(t)) describes the condensate state with a variable number of particles. Its form is 
guessed from the Liouvillean (10) by retaining operators with zero mode 

I W ) = e x p  (W))In) (1W 

where 

The function y(t) has to be determined. The vector In) represents the condensate with 
a Poisson distribution of particles among the cells of the lattice 

In)=(a:)..(b;)”blO). (13) 

Excitations of condensate IY(t)) are made with S(t) and make the distribution of the 
particles spatially inhomogeneous. Excitation operator Q; of the order m removes m 
particles from the condensate and simultaneously creates them in different excited 
states. Explicit forms of the first five operators of Q;  are 

S(f) = s, (f) (15) 
m 
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where cluster operators S,(t) = u,(t)Q;, and subscript m designates excited states. 
The first terms of expansion of S(t) ,  which are linear in Q,& ( A  =a ,  b), are as follows 

Temporary dependence of S( t )  is determined through cluster functions u,,,(t). In 
analogy with (16), we can construct excitation operators of higher orders. As a result, 
the function IF(t)) will satisfy conservation of normalization (3), i.e. 

where vector 

(zl = (0 lexp (ao+ bd (18) 
provides full statistical averaging over configurations and over particle numbers. 
Equation (17) follows from identity (z I S,,, = 0, which is true for all types of indexes m. 
In particular, evolution of the condensate state [U'@)) conserves normalization (17), 
i.e. (zlY(t))= 1, for any y ( t ) ,  once (zln)=l holds. 

If we leave open the fact that the full set of operators S,, with m a  1, generates a 
full space of states that is orthogonal to condensate IY), does not change particle 
numbers and conserves normalization of IF), otherwise, we can thiik of the other QL. 
For instance, we can expand operators other than in a plane wave basis. The choice of 
basis depends on the symmetry of L, general properties of the arrangement of 
particles in the exact IF@)) and the ease with which it promises an answer. 

In a regular theory, a set of QL, m 2 1, constitutes the complete and orthogonal set 
of excited states, i.e. 

[QL, QLpl=O (n I QL Q,h) = 0 m f m '  (196) 
(nl Q, = 0 (194 

where In) is the orthonormal zero mode condensate state. 
Here, we break off from the general discussion to say a few words after [19] in 

favour of an exponential ansatz ( l l ) ,  as the formalism seems not to have been used in 
non-equilibrium classical kinetics before. (1) Since the cluster operators S, are 
independent, the corresponding state vector factorizes as it should for probability of 
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independent states. (2) As a corollary of (l), the exponential ansatz (11) provides a 
correct dependence of expectation values on volume, Q, and particle number, n,  for 
arbitrary decouplig of the set S,(f) ,  the so-called sue consistency condition. Thus, 
one should not worry about the thermodynamic limit. (3) By Taylor expansion of the 
exponent, each cluster state can be represented by an infinite linear combination of 
states with arbitrary particle interactions inside and outside the cluster. This property 
corresponds to infinite summation of diagrams and effectively exlcudes divergences 
inherent in the usual perturbation theory. (4) A desirable set of kinetics equations for 
cluster functions is formed by projection of the governing equation (9) (in which IF) 
satisfies (11)) onto the complete set of states {(Cl, (Cl QJ, where (Cl is the condensate 
state. Physically, projection means the statistical averaging of kinetics equations over 
all configurations and numbers of particles. We remark that this approach applies 
equally to both Hermitian and non-Hermitian governing operators, the latter class 
including Liouvillean (10). Thus, we avoid the spectral problem in solving (9). 

4. Relationship between cluster and reduced DF 

There is one-to-one association between @m and U,,,. It is established in the same way 
as the relationship between the moments and the cumulants in classical probability 
theory [34]. Indeed, the full state IF) is expressed in terms of linear combinations of 
configurations, (8), and in factorized form, (ll), hence 

On projecting this relationship onto the excited states, we connect @,,,with U,. For 
instance 

4 k  9=@dk W o h  4. (21) 
This can be Seen by comparison of matrix element M =(nlQakIF(f)) ,  when the vector 
I F ( f ) )  is picked out in form (8) and in form (11). In writing (21), we have also used the 
statement 

since the normalization of IF) can be ascribed entirely to the condensate state lY(f)). 
Analogous calculations of matrix element (nlQkQ.-rlF(t)) yield the pair cluster 
function 

U,(k , t )=@,( -k ,k , f ) /@o(n,  f). (23) 
From section 2, the regularity property of the reduced DF requires the function @, 

to be of order Q-lO(1). This allows the solution for U&, f) to be written as 

d k ,  t) Q - ' & b ( k  f) (24) 
where we have defined the intensive function &(k, f) (= O(1)) which we refer to as a 
pair correlation function. The sense of this substitution will become clear in sections 8 
and 9 where concrete calculations will be done. 
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If we set m-particle cluster functions U,,, with m a 2  to zero, then @")(k) factorizes 
exactly 

"9 nb 

@("Yk) a JJ n 4k;)o*(k,) .  (25) 
;=I j = 1  

So, the U,,, for m a 2  are responsible for correlation effects in the system. 

composed of particles of a single kind, and restrict our analysis with S in form 
Another property of (20) follows if we consider, for simplicity, the system 

then the four-particle DF is seen to be 

@&, kz, k3, kV@o=2 E Nki ,  k)o(kj, b). 
P 

Here, the sum is over all permutations, p,  of different indices i, j ,  I ,  taking on values 2, 
3, 4. 

In order to highlight the difference between the two forms of IF), we emphasize 
that pairing correlation model (26) accounts for the kinetics of many-body DF, 
including @,,, with m S 2 ,  not merely the two-body kinetics for @*. For instance, the 
single term S=U& t)Q.tCQ,'_, generates an infinite linear combination of states 
which can be viewed as excited from zero state condensate by operator (Q&QZ-Jm, 
mS2.  The aforementioned operator S accounts for RPA. 

In conclusion, the cluster functions U,,, provide contracted descriptions of many- 
body systems in CCA just as the set of reduced DF @,,, does in Prigogine-Balescu 
formalism. In classical many-body problems in coordinate space, the connection was 
known long ago [35]. We state it in Fock space now. The CCA formalism seems to 
provide a more suitable tool for reduction of degrees of freedom than the tranditional 
one. 

5. Operator equation for S(t)  and So(f) 

Once the state vector is written in the form (ll), we encounter the question of how to 
determine the cluster functions U,,,@) and y(t ) .  The vector 

IF(t))=exp (S ( t ) )  exp (Sa(t))'ln) (27) 

is an exact state fulfilling (9) when S ( t )  generates all possible configurations of 
particles. So, in order to obtain the kinetics equation for S(f), all we need is to perform 
the time derivative 
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Here, the exponent breaks into parts corresponding to different independent modes 
QL (19). Then, on operating on both sides of (9) with operator exp (- S(f)), we find 

a,(s+so)l~(~))=il~Y(t)) (29) 

t = e-% es. (30) 

where i defines canonical transformation 

Now, it only remains to carry out the projection (29) onto set (Cl, (ClQ, to derive the 
kinetics equations for y(t) and u"(t). 

It is pertinent to note that if a general mathematical structure of operators L and 
Q; were such that they comprise a close Lie algebra, then we could find an exact set of 
kinetics equations for y(t) and um(t), as is done in the Wei-Norman algebraic 
procedure [36]. This is why we prefer to utilize the time-dependent formalism in 
treating the DLR. 

6. Action mass law for A + E  -b 0 reaction 

We want to connect the cluster function y ( f )  with the average number of particles of 
(say) A kind, defined as 

01 

As is seen, the average number of particles is determined by the condensate part of 
the full vector state IF(f)). The kinetics equation for (n,(t)) follows immediately from 
the explicit form of I"), (12), and gives the action mass law with effective rate of 
recombination p(t), i.e. 

= - o-'p(t)(n.(t))(nb(f)) (33) 
(the overdot denotes the time derivative). In obtaining this result, the Bose commuta- 
tion relation for zero mode has been used first, and passage to the thermodynamic 
limit has been done after all necessary calculations, assuming the Euctuations of the 
total particle number are negligible. 

For a rough estimate of the function y(t) ,  we suppose that mode coupling in 
Liouvillean LR is irrelevant for the kinetics and keep in LR only those operators with 
zero mode. Then, the state IF) will look like 1") with cluster function 

y(r) = wot. (34) 
In fact, mode coupling affects the kinetics and leads to a coupled system of equations 
for y(f) and u,(t). 

Employing the general scheme of section 5, we are in a position to state the 
kinetics equation for y(t). On projecting both sides of (29) onto condensate (ml, it 
follows that 

Q-* j (m I Qol Y) = (mlL 1"). (35) 
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From now on, we employ the pairing correlation model on a statistically homo- 
geneous lattice, and so truncate S after 

s= s,+ Sbb+ s,. (36) 
The evaluation of the necessary matrix elements is facilitated by the 

Baker-Campbell-Hausdorff formula for canonical transformation of creation and 
annihilation operators [37], and yields - 

&=a. a:=a:  (374 
& = (376) 

(374 

+ Unb(k, t)b ? *an bo + 2U,(k, t )U  ?&J 

- 
ab =ab - 2' o,(k, t)a: bTkb0-2 x 'uu(k ,  t)a:a!kao. 

By symmetry, the canonical transformation with operators of B particles can be 
written. It is hoped that some points in the calculation of matrix element M =  
(mlLlY)will help one to use (37) in other cases. First, the expectaton value of M in 
(35) is given between condensate states (ml and IY). Employing (37) and identities 
(Cla:=(Clb:=O unless k#O, where (Cl is arbitrary condensate state, M can be 
written in the form 

M =  B-' (mlc  ( ~ ~ ( i x 6 - k -  wka$ b,+ci,6-k)Iy). 
k 

Contributions to M from operators with k=O and k f O  result in the final equation 

? ( I )  = WO + E' W&b(kr t).  (38) 

If correlations are absent, as is expected in the case u,=O, then the cluster function 
y(r) is identical to (34). Eliminating i(t) from (38) and (33), we obtain the rate 
equation for concentration c&) = O-'(n,,(t)) 

atcdr) = - k(tk (Os (0 (394 
where 

To improve (396) still further, we can enlarge the basis set in operator S beyond 
the pairing model (36); this, however, leaves the relationship (396) unchanged. 

In this section we assume as self-evident that projection of (29) should be taken on 
vector (ml. In principle, one can lind a projection on state (21; this entaih the identity 
0 = 0, and giues no new information. 

7. Equations for pair correlation functions 

We are thus led to consider equations for pair correlation functions g,,(q, I ) .  To do 
this, we first project both sides of equation (29) onto vector (zIQ,Q,-,=(zlu,b-,, 
getting 

(z I aob0 I YW,,(q, r) = (z  la&& I W)). (40) 
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In contrast to the calculations in section 6, here, the projection is carried out on vector 
(z I, involving full statistical averaging over configurations of particles and over particle 
numbers. On decomposing the Liouvillean LR in RHS of (40) in the number of 
operators with zero mode (see appendix l),  calculations of matrix elements become 
easier to make. We restrict attention to a typical matrix element arising from operator 
H3 (see appendix l), i.e. consider M3=(z~u9b- ,&~Y(r) ) ,  or 

I __ 
M3 = (z I up bmqQ-* w& bZ "(t)). (41) 

Making use of (37), the vector uik6-xlY(f)) is seen to be a linear combination of pure 
condensate state together with three other states, each representing exactly one 
excited pair of particles either of type U&&, a: b i , ,  or b: b!k, above the zero mode 
condensate. Subsequent operation by a: 6; on these states gives a set of states in 
which pairs of particles either add to the excited states or add to the condensate. Thus, 
non-zero matrix elements off& between lY(t)) and excited bra-state (gla,b-,, emerge 
from the component of vector &b-klY(t)) containing precisely a single pair a: b?, 
above the condensate. We get 

(42) 
' wk 

-'-',dq, t) E'-'.&. t ) ( L ~ ( ~ ~ ~ o + b o b ~ ) a o b o I ~ ( ~ ) ) .  

The first line of (42) exactly coincides with matrix element(z~a,b_,L~~Y(r)). Hence, 
these terms cancel each other in the full matrix element (40). The origin of the 
cancellation of the nonlinear our terms is in the balance structure of operator LR 
involving the gain and loss terms. This peculiarity in the rate equation permits us to 
find in section 9 an analytical solution for U& as a function of the concentrations cA(t). 

By performing straightforward manipulations with Bose algebra for other matrix 
elements Mi and implementing the thermodynamic limit 

(2 l a g b $ l W ) )  = (n.(t)%.(i))B (43) 
(a, 6 = 1,2 and (n&)) %- 1, Q > 1, ,I = a, b) in the kinetics equation (40) with cluster 
functions u,&, t )  defined by 

It is useful to rewrite the expression for k(t), (39b), in the form 

Ut) = M + % (9. (47) 
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In order for fhe description to be self-contained, we should derive kinetics 
equations for gbb(q, t )  and g,(q, t )  by projecting (29) onto (zlQ,Q,-,, followed by 
passage to the thermodynamic limit (43). For A particles, the following equation holds 
true 

kcza(q, t)  - 2Da4g0n(q, r, + 2L (t)cb(t)g,(q? r> - bqCb(tkob(q7 t ) .  

The equation for gbb(q, t )  is analogous to g&, t )  and requires only change of indices 
a e b .  

We have reached one of the central results of this paper: equations (45-48) for the 
pair correlation functions supplemented by (39a) formulate the pairing correlation 
model of DLR. 

S. Two-body approximation: the Smoluchowski kinetics 

Thus far in the paper, we have been able to proceed without having to use any explicit 
form and sense of the correlation functions. Pursuing the logic of the subject, we 
discuss general properties of the gas at low concentration and strong coupling limit. At 
low concentrations, c,-tO, a leading contribution to (45) is provided by the first three 
terms of the RHS, and (45) becomes linear in g,,, and closed: 

g.bh 4 = - (D.,+Db&,l(q, f) - wq- T&). (49) 

As for the general properties of the state vector IF(t)) in this approximation, it can 
be regarded as created by a singly excited pair of A-B above the condensate. The 
many-body character of recombination is missing here. By drawing an analogy with 
quantum methods, we can consider the Smoluchowski approximation (49) as resulting 
from the Tam-Dancoff approximation [Z] or, in the language of perturbation 
theory, from summation of ladder diagrams. 

To show that gd leads to the Smoluchowski result for the effective rate of 
recombination, let us specify the elementary rate of pair recombination 

where D is the mutual diffusion rate, D = D, + D,. The form (50a) is responsible for 
infinitely fast local recombination of pairs of particles. A finite rate (50a) is derived 
through renormalization [38] of the Liouvillean of the fast recombination to an 
effective one, LR (lo), with diffusion controlling and non-local (in coordinate 
representation) rate 

6 

with e, being primitive vectors of the simple cubic lattice. The renormalized form of 
LR is preferable for our further analysis io section 9, as it does not lead to the 
ambiguity that would arise from the remaining terms in (45) in the limit w,-+m, 
cX+O if the non-renormalied version of LR was chosen. Fast recombination implies 
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also that no cell of the lattice contains particles of more than one kind, Thus, we 
subject the pair correlation function gOb(r, t) to condition 

gob(r=O,t)=O. (51) 

gnb(r, t )  = D(r, r+  eA k d ( r +  e,, t) -g&, t)) - B(r, t) (52) 

By Fourier inversion of (49) and (46), one finds 
6 

0-1 

where B(r, t )  = w(r) (1 +gob(r, t)). Here, the lattice Laplacian is written in a more 
general form that accounts for the diffusion on the non-uniform lattice. Validity of 
(52) follows from derivation of (45-48) which holds true for the arbitrary inhomoge- 
neous function D(r, r+  e). 

To keep zero value for the function gob(r=O,t) in time, we impose the following 
condition [lo] on diffusion rates 

D(0, ea) = 0 where a= 1, . . . , 6 .  

This equation is consistent with the diffusion part of the effective Liouvillean found in 
[38]. Equation (51) is satislied on the lattice at any time, if (51) is satislied at t =  0. The 
proof is clear. At r = 0, we have w(0) = 0, B(0, t) = 0 and (52) becomes gab(O, t) = 0, so, 
gd(O, t )  =.O if gnb(O, 0) = 0. Equations (51) and (53) Serve as the 'boundary' conditions 
to (52). Another way of viewing the non-intersection of co&gurations of A and E 
particles is to consider the 'jumping' of a particle, say A, with rate D towards a 
particle B, Iixed at cell r=O. By (53), the lattice on which the diffusion of A happens 
has six broken bonds with a common cell at r=O. From this point of view, the A 
particle cannot appear at r=O together with the E particle. Due to non-local 
recombination (506), the broken bonds (0-e,) do not affect recombination when the 
particles are placed in the adjacent cells, but the broken bonds prevent the particles 
from making contact. 

In seeking a solution to (52), we invoke the Green function (GF) technique [39]. 
The of @(r, x )  for a uniform lattice is ruled by 

(53) 

6 

&'(r, x )  = D ( P ( r +  ea, x )  - P ( r ,  x ) )  + d(r -x ) .  (54) 
0-1 

The tilde (-) signifies the Laplace image function with variable E conjugated to time 
t. The diffusion rate over the arbitrary bond (r, r + e) reads 

D(r, r t e ) = D + f ( r , r + e ) ,  (55) 
where c(r , r+e)  is the localized perturbation on the uniform lattice, so that 
E(r , r+e )=-D,  if bond ( r , r + e )  belongs to the central cell r=O, and c(r , r+e)=O 
otherwise. Then, (52) is equivalent to 

where B(x)=w(x)(&- '+g~b(b(~)) .  The sum over n in this equation is restricted to cell 
x = O  and six neighbouring cells x=e,, a = l ,  . . . ,6, since both function w(x) ,  (506), 
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and E(x, x + ea) are localized in space. Taken in conjunction with gab@ = 0) = 0, it is a 
simple exercise to find the solution for the correlation function 

(I 

gob(r) = - E - ~ D  %(r, e 3  + %(r, x)g,(x, t= 0) (564 
-=I 

where combination 

%'(r, O)%"(O, x )  
9(0,0)  ' %(r,x)=%'(r,x)- 

stands for GF for diffusion from cell x to r on an uniform lattice containing an infinitely 
absorbing trap at r=O [NI. 

The solutions (56) for gab permits us to find an effective rate of recombination k(t). 
With the aid of (a), (47 and (50b), we have a general expression 

b 

4t )=6D+DCgab(en7t ) .  

Inserting (56) into (57), we arrive at the final result 

0=1 

%yo, x )  
%'(O,O) Ob ' L ( & ) = k l ( & ) + ~ - g  ( x  t = O )  

with 

Lo(&)  DE-' + Fa = (&"(O, O))-' - I 

(57) 

The later formula demonstrates the well known result for recombination rate when 
correlations between A-B pairs are absent. In deriving (58), use has been made of the 
properties of GF for a uniform lattice (see appendix 2). Asymptotic behaviour (58) at 
t+m (&+O), yieldsX(t)=k"(t)=6D/Iw, whereI,-1.51 isthe Watsonintegral[N]. 
In the continuum limit, i.e. r+ 1 and t+ m , correlation functiong&(r, t) is determined 
by the GF 

%'(r, E )  = ( 4 z ~ r l - l  exp ( - r m )  

gab(r, t)  -, - 1 1 ( 4 4  

(59) 

(60) 

and obeys 

which is merely the solution of the Laplace equation Ag&(r, t )  = 0.  

effects. 
The long-range character of gob suggests inclusion in the discussion of many-body 

9. Role of pairing correlations 

9.1. Exclusion principle 
Having got the solution of the two-body problem, we are going to analyse the full 
system (45-48). The state vector IF) in this case is represented by a mixture of pairing 
correlations created from the condensate with operators (Q&Q;+)'", m a 2 .  The state 
of the same type is known, and referred to as the random phase approximation. 



5328 M G Rudauefs 

Before studying the question of how pairing correlations affect the effective rate of 
recombination, we first prove that (45-48) provides non-intersection of the configu- 
rations of particles, i.e. gab(r. f) satisfies (51). In the two-body problem, the constraint 
(51) has been guaranteed by ‘deformation’ of the lattice, i.e. with property (53) .  For 
the condition gd(r=O, r )  = O  to be valid now, it is tempting to keep the topological 
restriction (53) in the rate equations for correlation functions gm(r=O,t) and 
gbb(r=O, 1). In other words, we want to forbid the two particles of one kind occurring 
in any cell, i.e. when the relative distance between particles of one kind equals zero. 
From a statistical point of view, these particles should obey the Pauli statistics. 
Actually, it is the Pauli statistics which led us to the Liouvillean (10) with renorma- 
k e d  (diffusion-limited) rate (50) [38]. The fact that in deriving (45-48), we ignored 
the Pauli statistics and have made algebraic manipulations in the framework of the 
Bose statistics, can now be remedied by imposing the additional restrictions 

gn(r= 0 ,  f) = 0 (61) 

where 1 = a ,  b .  These conditions are satisfied on the ‘deformed’ lattice. Indeed, (50a) 
is the same as w,=6D-  (D,+Dbp). so, we reformulate (45) in coordinate represen- 
tation 

gab(r, 0 = DAg&, f) - W ,  0 + c(Og&, V&) -J(r, t )  (624  

with definition 

From (53), it follows straightforwardly that VDVg,(O, f) =O.  Thus, the non-local part 
of (62) gives no contribution at any instant of time to the equation forgOb(r= 0, f). The 
same is true for the kinetics equations for gu(r=O, t) derived from (48) by Fourier 
transformation to coordinate space. On noting B(r=O,f)=O, we obtain a homo- 
geneous and closed system of kinetics equations for g,,,(r= 0, ?). This conclusion 
validates the exclusion principle for any kind of particle, i.e. (51)  and (61), if it takes 
place at f = 0. 

9.2. Screening of gab in monomolecular DLR 

The simplest case for exploring the full system (45-48) is that of monomolecular 
kinetics when one component, say B, is in excess. Then, the full concentration c(t) is 
practicallyconstant over time, i.e. c(f)  =cb. The asymptotic behaviour of the effective 
reaction rate at the low concentration h i t  is expected to be governed byh ’, so 
To@) --f - 6D(1, - 1)/Iw at I-+ m . The sign of To(t) is of particular value. Generally 
speaking, an exact value of To@, along with the value of the first approximation of 
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To(t), is also negative since g,&, f ) < O ,  for r a  1 .  So, it is helpful to define a positive 
variable tlz by putting 

then (62) results in 
DK= = - cTo (63) 

gab@, c)=(VDV-D~?g,~(r , t ) -€i(r ,  c)-J(r, c). (64) 
To lind a solution to (64), let us neglect pairings A-A and E-B, so dropping the 

function J(r , t )  from (64). Then (64) becomes a closed self-consistent equation. 
Considerable reduction in the mathematics of the problem occurs in the low concen- 
tration limit when K' is practically constant, ~ ' = 6 c ( Z ~ -  l)/Zw. By comparing (64) and 
(521, one obtains a solution gob(r, E )  in the same form as (%U), but argument E in the 
GF %(r,x; E )  should now be replaced by variable & ' = E +  DK', i.e. 

g . b ( r , E = - - E - l D C % ( r , e . ; E ' ) + ~  % ( r , x ; e f ) g a b ( x , t = ~ ,  (65) 
*=I  I 

where we have explicitly shown the dependence of 9 on E .  Making use of (59) at &-+O 
or E' +Dd, we infer 

geb(r, t )  -+ - r -' exp ( - m) a t t - + m .  (66) 
The occurrence of screening in gob(r, t) can be readily seen from (64) by rewriting the 
equation in the Laplace-Fourier domain. Then, the function gab(q, E )  will have a pole 
at frequency E =  D(q2+ x'). n e  shift from diffusion mode. reveals the collective 
mode. 

The physics behind the screening, or in other words the exponential suppression of 
the correlations into pairs A-B, is clear. Expression (66) tell us that when a particle, 
say A, jumps from cell r towards a particle E k e d  at cell 0, the A particle can 
recombine both with the B particles placed around cell 0 and with the B at 0. 

The screening gives rise to a change of the rate constant A ,  (58). To bring this effect 
into the formalism, we use the above-mentioned property that the solution g.&, E ' )  

coincides in form with the two-body &(r, E ) .  So, disregarding the initial correlations 
in (58b), the many-body rate constant takes the form 

(67) 
Consider the limit ~ ~ 9 1 .  The GF %'(O,O; E ' )  on the uniform lattice depends on E' as 

at small E' .  More precisely, %' (0,O; E ' )  = IJ6D - ( 4 n D ) - ' m  at E' +O [41]. 
On inserting this result into (67) and putting E+O ( t - + m ) ,  c b 9 1 ,  we get 

L(E)=(&'(O, 0; E +  DgZ))- ' -  1. 

From (68) and (63), the correction to the Smoluchowski rate constant is proportional 
to fib at cb Q 1. The square root dependence on cb of h ( m ) has been found in another 
way in [42,43]. The consistency of both methods is not surprising since the summed 
most divergent terms, = (q-')", in perturbation theory are proved [43] to be the same 
as in the Debye-Huckel theory (DH), which is equivalent to a random phase 
approximation accounting for multiple pair excitations (Q&Q.+-,)". We can streng- 
then the formal analogy with DH theory by noting that the inverse screening @airing) 
length has just the same concentration dependence as the inverse Debye length for a 
system of ions, i.e. K=G. 
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The result (68) can be directly applied to DLR with comparable concentrations of 
particles. For this case, the full concentation, c( t ) ,  tends to a constant value c(t) + 
Ic.(O)-c,,(O)I#Oat t+m,so~(f)+constaot, hence, thesolutionfork, (67)applies. 

9.3. Slowing kinetics for the bimolecular DLR 

Our particular interest is in DLR for equal concentrations of the species, i.e. 
ca(t) =cb(t). Nonlinearity of the system (45-48) rules out an exact analytical solution, 
forcing one to use approximations. For the sake of simplicity, we begin with kinetics 
without pairing of A-A and B-B, i.e. put S,=O, Sbb=O, and thus discard J(r , t )  in 
(62). Introduce the auxiliary function 

and q(t)=-c.(t)To(r). From (62) and (69), we immediately obtain the equation for 
h(r, 4 

' h( r ,  t) = VDVh(r, t )  - w(r) (g1(t) + h(r, t ) ) .  (70) 

Repeatedly invoking the method of solution (52) presented in section 8,  we obtain 

a= 1 I 

On Laplace inverting (71) and turning back to gh(r, t) ,  we arrive at the final result for 
the correlaton function 

Function zl(t) can be rewritten in tems of the concentration c,,(t). In so doing, we 
eliminate To@) from q(t) by refering to (47) and (39) and writing q(t) =a, In (c,,(t)) + 
6Dc.(t). Combining this with (69), we get 

Part of the answer for A ( - )  comes from the first term in the RHS of (72) at t+m 
( E ~ O ) ,  namely 

Its contribution to the effective rate of recombination (57) yields the Smoluchowski 
rate constant (see appendix 2) 

6 

A 0 ( ~ ) = 6 D - D  ~ ~ n ( 0 , e . ; e = 0 ) / ~ 0 ( 0 , 0 ; ~ = 0 ) = 6 D / Z , .  (74) 
a= 1 

Examine now the role played by the residual term in (72) resulting from the initial 
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conditions, g&,t=O). Due to (73), this term is proportional to c;'(t), thus, its 
contribution becomes predominant at c,+O. Moreover, it breaks down the second- 
power dependence on concentration in the material balance equation, giving the final 
equation 

E,,= -Loci+ DC:(O)C;'(t)Gt -". (75) 

Here, the factor t-3n comes from the diffusional asymptotic of %(ee, x; t ) ,  and the 
positive constant G (=Em) follows from summation over x and e,. This equation 
exhibits a slowing of the kinetics. Indeed, assuming c,(t)=t-", the LHS of (75) is 
found to fall to zero faster than the separate terms of the RHS, so as expected 

c.(t) = ( D c ~ ( 0 ) ~ ; ' ( t ) ( G / & o ) t - 3 ~ ) ' n ~  (tlD)-"' (76) 

at some intermediate time interval at which c ; l ( t )  = 1. This dependence can certainly 
be ascribed to collective correlations of particles. However, as we go to t + m , then 
C;'(t)-bO, so the law =t-3" falls off, and c.(t) undergoes transition to the law 

For the purposes of discrimination between t-3'4 and t-' kinetics, one can take 
c&)=t-', 

criterion 

D]Ic,,(r)dr=I 

setting a characteristic time scale 

t* =D-'c.-'(O) (77) 

within which the kinetics differ from the familiar action mass law. After the time t*, 
the pairings A-B are destroyed or 'burned' due to diffusional spreading of the 
reagents. In passing to dimensional units, D-' in the above estimate (77) should be 
replaced by I*D-', where 1 is the lattice constant and c.(O) is the density number. 

It remains to check on the validity of the stated assertion that on the intermediate 
asymptotic, the law ~ . ( t ) = t - " ~  does not affect A-A and B-B pairings. Simple 
inspection shows that (48), on transforming to coordinate space, has the solution 

where Pa(x -+r; t)  is the GF for transition of A particle on the 'deformed' lattice, with 
Pa(x+O;t)=OandP,(x+O;t)#%(x,O;t) holding. Substitutionof (78)into(62)gives 
additional terms in the gd which are singular of the type c-'(t), i.e. they have smaller 
singularity than c-*(t) as c-0. The corresponding contribution to the action mass law 
falls faster than t-3'4 and can be dropped. So, the pairings A-A and B-B, as has been 
assumed, are immaterial at the asymptotic. 

Numerical calculations are necessary to derive more details about the physical 
meaning of (45-48). 
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One remark is noteworthy before concluding. Equations like (79,  but without the 
exponential factor c2, have been derived in a different fashion in [12,14]. 

10. Summary and outlook 

Correlation effects between particles in DLR are known to have been investigated by 
various approaches; each of these needs an approximation scheme to reduce the 
number of degrees of freedom. These approaches can be cast into four classes: (1) 
path integral formalism based on functional formulation of (9) 144,451; (2) diagram- 
matic Green function perturbation methods [13]; (3) approaches using the model 
Liouvillean [14]; (4) truncated hierarchy of a rate equations 19-12,15,46]. The time- 
dependent CCA developed in this paper belongs to the fourth method. It seems to have 
the advantage of being simpler than the alternative methods of calculation of 
collective and correlation effects relying on the mean field approximations?. 

For the scenario of DLR described by the Liouvillean (lo), we have derived 
governing kinetics equations (45-48) for pair correlation functions which completely 
incorporate pairing correlations in the many-body system, leaving higher-order 
correlations out of the discussion. The Fock space associated with the kinetics 
encompasses pairing excitations carrying a vanishing total wavevector. In the original 
CCA this approximation is referred to as the SUBZ approximation (or coupled pair 
approximation), and is assumed to make a leading contribution to the correlation 
properties of the system in hand 126,271. We believe sum captures the major fraction 
of correlations to the rate equation (75), leaving only a minor part for SUBn, n33 .  
Although, in principle, any type of  SUB^ can be introduced in the systematic 
mathematical treatment, in practice, only s u m  gives a closed theory, the SUBI terms 
involving single-particle excitations, i.e. (16a), are dropped due to statistical homoge- 
neity. 

We have called the SUBZ approach a pairing correlation approximation. It carries 
an obvious sense of the division of the system into pairs of particles with total 
wavevector 0, and quite distinct from formation of the chemical bonding. A minimal 
basis space relevant for this purpose is spanned by the states of the type 
(Q&Q;t$lC), where IC) is a condensate. Having restricted the many-body basis, 
the correlation problem was formulated as a solution to (45-48) for correlation 
functions gul(r, t) which are derived by projecting kinetics equations for IF@)) onto a 
given basis set. Physically, this projection means averaging over configurations and 
particle numbers. 

To prepare the ground for the general case, we have solved (45-48) in the two- 
body approximation when c,(t)+O and the system is reduced to a single equation 
(49). In the strong coupling limit, the elementary rate of pair recombination is non- 
local in space and diffusion-limited, equation (50b). The exact solution for gab(r, t) 
reproduces the Smoluchowski result with the rate (58b). The solution of the two-body 
approximation is important for two reasons. 

First, rapidly recombining particles give rise to the necessity to sum, in diagram- 
matic language, the latter diagrams in order to renormali  the elementary rate w(r),  
equation (50), to the effective two-body rateX(f), equation (58). We have referred to 
this calculation as the strongsoupling limit. In this way, we have obtained the long- 
range correlation function gab(r,f)+r-' ,  at r + m ,  t + m .  So, we have been faced 

t I lhank the referees for calling my attention to references [20,21,29-33,451. 
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with the second problem of how to incorporate the collective properties emerging 
from long-distance effects. The way to do this is in using an RPA-inspired approach. 
There are two distinctive features of the CCA, namely, incorporating into the analysis 
both short-range and long-range physics (by accounting for ladder and ring diagrams 
along with the so-called 'condensate potential' terms) without performing pertur- 
bation calculations; this enables successful application of the CCA for exploring 
collective and correlation effects in DLR. 

In section 9.2, we have solved (45-48) for a monomolecular regime neglecting 
A-A and E-B pairings. The corresponding solution &(r, E )  coincides in form with 
the two-body gob@, E ) ,  but all GF in the latter have argument E + DK* instead of E .  This 
leads to an exponential screening of gob(r, E ) ;  also asymptotic behaviour of L repro- 
duces the result [42,43] at c,,<l. Within the same general framework, we have 
treated bimolecular recombination, i.e. the case c,,(t) =cb(t), where, due to the initial 
value problem of DLR, pre-asymptotic kinetics have k e n  found to be co(t)=-t-3'4, 
however, c.(r)=t-' at true asymptotic at r - m .  

Generally, the pairing model can be explored from the viewpoint of approxima- 
tions of the LR, not in the vector state IF). Indeed, we can reduce the whole LR by 
retaining only pairing interactions by expansion of LR in number of operators with 
zero mode, and then seeing if anything useful emerges. This point of view was 
adopted in [14]. The authors found ca(t) . This result conllicts with our 
one, as we have found c&) = t -' at t + a. Note that pairing the Liouvillean LR does 
not contain term HI, (see appendix 1) accounting for ladder diagrams, and so 
possesses no means of treating accurately the strong coupling h i t .  We leave the 
detailed comparison of the two formalisms to the reader. 

The simplicity of the CCA approach for DLR can promote further thinking on this 
subject. If in this way, one gives up the idea of selecting an unorthodox basis set {Q:} 
which provides a large-scale separation of the phases in the volume, the present 
(svsz) level of the description, nonetheless, offers ample opportunity for application 
of the CCA to the wide area of non-equilibrium classical systems. Our intention here is 
to list a few examples. Among them is exploring collective properties in systems 
showing Turing instability ('unstable condensate' in our language) [47]. We can 
speculate whether the screening length K - ~  tends to infinity if the concentration tends 
to a critical point. The practical essence of the foregoing discussion for the two- 
component systems remains the same for multicomponent systems. Explicit in the 
methodology is the use of the coupled cluster ansatz (27) with S(r)  in the smz form 

at t + 

S(t) = 8-l 

1.1' 

subscripts 1, 1' denoting species. Next, we project the master equation for IF(t)) 
governed by the relevant Liouvillean onto the pairing basis set, to obtain kinetics 
equations for gu, (k, t ) .  Finally, the third step involves solution of the kinetics equation 
as in sections 8 and 9. This work can be regarded as an extension of RPA to complex 
chemical kinetics. The aforementioned S(t) is hinted at by the cluster operator S in the 
description of a Bose liquid [ZO]. It is remarkable that this form of S holds for a 
kinetical problem with non-Hermitian governing operator L. 

Study of of cellular classical hydrodynamic systems [a] can be performed by the 
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CCA. Investigation of quantum hydrodynamics in the framework of the CCA has been 
done in [33]. 

Association and dissociation of charged reactants maybe causes no principle 
difficulties. Here, the Coulomb interactions favour the using of the pairing correlation 
approach. 

The peculiarity of the kinetics of the gd(r, !), that initial value conditions have a 
pronounced influence on the kinetics at time interval D"<t<t*, gives rise to the 
question of how the pairing correlation model manifests itself in the scattering 
function [49] on that time interval. 

From a qualitative retrospective, the exponential ansatz of the CCA is similar to 
putting by hand the exponential form of the density matrix in the formalism of the 
non-equilibrium statistical opertor (mso) [50]. The mso treatment was found to be 
useful for some cases [51]. However, the explicit forms of the exponents in NESO and 
CCA are quite different. Our objective in this paper was to illustrate the coupled 
cluster method for dealing with collective and correlation effects in DLR. It is too soon 
to discuss the applications of the method, though it is clear that it would call for a 
different appoach for analysis of correlations in classical many-body systems. 

In the construction of the kinetics equations, the question of the applicability limits 
of the CCA naturally arises. This has been a salient problem of physical concern in this 
paper. As noted earlier [19,20] the problem of extracting the limitations of the SUBZ 
should be recognized, and the usefulness of the theory is justified aposferiody. The 
motivations for neglecting Smn, n 3 3 ,  on formal grounds is a difficult task, just as 
using small parameter, c(t), is not convincing. 

Concluding, the main message conveyed in [19-211 is that the CCA is a universal 
language for the analysis of correlation effects in quantum systems. We can strengthen 
this opinion, applying the same words to far-from-equilibrium classical systems. The 
second quantization formalism for classical systems 1251 supplimented with the ccx 
permits us to come back to the old problem of the classical cluster expansion [18] with 
the quantum mechanical language. Moreover, the coupled cluster appoach, it is felt, 
can bridge the language gap between classical and quantum methods in many-body 
systems. The reason for this is a similarity of presentation and exploring of the 
classical state vector IF) and its quantum counterpart [52]. 

Appendix 1 

Decompose Liouvillean LR into two parts, LR = Lk - g, corresponding to the gain 
and the loss terms in (9). Then, expand Lk and r;l in the number of operators with 
zero mode by setting, for instance, for particles of A sort ak = 6 ( k ) ~ +  (1 - 6(k))ak It 
appears that Lk will be represented with two different terms 

and will contain the 12 following terms 
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All primed sums are over non-zero modes. 
Calculation of the matrix e l e m e n t s M , = ( ~ ~ a ~ b _ ~ ~ ~ ~ Y ( t ) ) i s  straightforward, yet of 

little practical value. The net result to (45) from three operators H,,  Hz and Hlo is of 
order Q-', thus they cannot bring any contribution to the RHS of (45). Each of the 
matrix elements Ms, M8, M9, Mll vanishes. The M6 and M E  contribute to the second 
and third term of the RHS of (45). Finally, elements M3,  M4, M ,  are also sizable. 

Appendix 2 

Equation (54) for the OF on a uniform lattice yields three profitable realtionships. On 
putting in (54) r =0, x=O,  we find the first relationship 

&O(l, 0) - 1 =6D(%o(1,0) -%O(O, 0)) (B.1) 
where %'(l,O)=%o(e,, 0) for arbitrary a= 1, . . . ,6. The next relationship follows 
from(54) forr=Oandarbitraryx#O 

6 

( ~ + 6 D ) % ~ ( O , x ) = D ~ @ ( e , , , x ) .  
a=1 

Finally, relying on (Bl), (B2) and definition %(r, x), (56b), we have 

6 

S(X)-DC%(~,,X)=%'(O,~)/O,O). 
0=1 

At &-PO, the GF %'(CO, x) can be expanded as a series in 6, namely a&) + al(x)<e+ 
. . . . Thus (B3) has the Laplace original =t-3'Z at f + w .  The case x = O  is described 
separately, giving, in view of (56b), s(0) = 0. 
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